<u>1. Science aim/goal:</u> To measure accurate isotopic ratios and abundances of trace gases, to constrain models and inform understanding of solar system origin and evolution.

2. (i) Scientific Importance: Far-infrared space telescopes such as ISO, Herschel and Spitzer have made important advances in measurements of trace gases and isotopes for cold outer solar system objects, including HD on the four giant planets, water abundance on Titan, and HDO in comets. In addition, the stable isotopic ratios ${}^{12}C'{}^{13}C$, ${}^{14}N/{}^{15}N$, ${}^{16}\text{O}/{}^{17}\text{O}/{}^{18}\text{O}$ provide valuable information about both planetary formation and evolution. for example the large differences seen in ${}^{14}N/{}^{15}N$ from Jupiter (450) to the Earth (272) to Titan (167) may indicate both differences in original constituents but also fractionation by escape. However, our knowledge of these critical tracers of solar system formation and evolution remains meagre, with no far-IR space telescopes currently active. The measurements of D/H in hydrogen on the giant planets have large errors, so we are uncertain as to the degree of enrichment versus the protosolar nebula. The D/H is an important indicator of core/envelope fraction, which is needed to discriminate between models of planetary formation (Owen and Encrenaz 2003). The far-IR region provides a rich hunting ground for the signatures of isotopologues of small molecules, and the detection of complex molecules, such as benzene at 14.8 µm, which can be measured to constrain models of photochemistry.

(ii) Measurements Required: Spectroscopy from 10-1000 μ m is a key capability of a far-IR space telescope. This will enable a sensitive study of HD lines at 28-112 μ m, and rotational lines of HCN, CO, NH₃ and PH₃ and isotopes at 50-500 μ m. Many trace gases also have vibrational bands in the mid-infrared (10-20 μ m), including HCN, C₂H₂, C₂H₆ and more. The strong CO₂ v₂ band at 15 μ m, inaccessible even to SOFIA, would be accessible from space, including nearby isotopic emissions from ¹³CO₂ and CO¹⁸O. Spectral resolution should equal or exceed those of previous telescopes to improve S/N, while an aperture size of 10-20 m is desirable for S/N, and less so for spatial resolution.

(iii) Uniqueness to 10 μ m to few mm wavelength facility: The measurements possible in the far-IR will permit unique science. Small molecules such as HD (rotational lines) and H₂ (quadrapole lines) are only visible in this spectral region, and water lines including isotopes are for the most part not observable from the Earth due to atmospheric water. In addition, isotopes of CO and HCN will be observable. The amount of objects that can be sampled in situ (e.g. Galileo probe, Rosetta, OSIRIS-REx) is much smaller than needed, therefore remote sensing with a far-infrared facility to determine isotopic ratios on many solar system bodies is crucial to determining a complete inventory.

(iv) Longevity/Durability: A far-IR telescope will complement rather than compete with other large facilities that will exist in 2025 to 2030. Ground-based optical facilities in the 30-40m class will provide revolutionary capability at optical and near-infrared wavelengths. The JWST instrument range extends only to 28 μ m, while ALMA commences at ~300 μ m, leaving a significant gap in the far-infrared. After the expected end of JWST operations around ~2028, no mid- to far-infrared telescope is currently scheduled to be operational, leaving an even wider gap between near-IR and sub-mm capabilities. A large far-IR telescope will provide unique and critical science addressing key questions of solar system formation and evolution.

3. Figure:

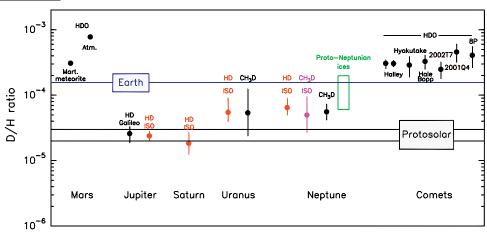


Figure 1: measured D/H ratios in solar system objects (Hartogh et al. 2009). The origin of volatiles supplied to the inner solar system from beyond the snow line - including the Earth's water- is currently uncertain.

4 .	T	ab	le:

Parameter	Unit	Required value	Desired Value	Comments
Wavelength/band	μm	10-300	10-900	A 30 K object has Planck peak at 96
				μm
Number of		20	100	Includes outer planets and moons with
targets				detectable atmospheres, KBOs and
				comets.
Survey area	deg. ²	$4\pi \text{ sr}$	$4\pi \ sr$	All but Mercury, Venus, Moon should
				be observable, as with JWST.
Angular	arcsec	1.0 @	1.0 @	Requires 12.5 (25.0) m telescope
resolution		50 µm	100 µm	
Spectral	$\Delta\lambda/\lambda$	10^{4}	10 ⁷	Grating is required, heterodyne
resolution				preferred in addition
Continuum	μJy	100	10	
Sensitivity (1σ)				
Spectral line	W m ⁻	10 ⁻⁵	10-4	
sensitivity (1σ)	2			
Signal -to-noise		1000	10000	
Dynamic range		5000	50000	ALMA is 10 ³ . Solar system planets can
				be bright compared to astrophysical
				targets, depending on bandwidth
				(spectral resolution), spatial resolution.

5. Key references:

Hartogh, P. et al.: "Water and related chemistry in the solar system. A guaranteed time key programme for Herschel," Planetary and Space Science 57 (2009) 1596–1606

Owen and Encrenaz, "Element abundances and isotopic ratios in the giant planets and Titan", Space Sci. Rev., 106, pp121-138, 2003.